Millaurine and Acetylmillaurine: Alkaloids from Millettia laurentii

D. Ngamga, S. N. Y. Fanso Free, Z. T. Fomum,
A. Chiaroni, C. Riche, M. T. Martin, and B. Bodo
J. Nat. Prod., 1993, 56 (12), 2126-2132• DOI:
10.1021/np50102a015 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50102a015 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

ACS Publications

High qual ity. High impact.

MILLAURINE AND ACETYLMILLAURINE: ALKALOIDS FROM MILLETTIA LAURENTII ${ }^{1}$

D. Ngamga, S.N.Y. Fanso Free, Z.T. Fomum,*
Department of Organic Chemistry, Faculty of Science, University of Yaounde, BP 812, Yaounde, Cameroon
A. Chiaroni, C. Riche,
Institut de Cbimie des Substances Naturelles, CNRS, 91118 Gif sur Yvette, France
M.T. Martin, and B. Bodo*
Laboratoire de Cbimie URA 401 CNRS, Muséum National d'Histoire Naturelle, 63, rue Buffon, 75005 Paris, France

Abstract

Two guanidine alkaloids with a new skeleton, millaurine [1] and O-acetylmillaurine [2], have been isolated from the seeds of Millettia laurentii (Leguminosae). Their structures were determined from spectral studies including ir, ms , and nmr and X-ray crystallography.

The genus Millettia (Leguminosae) is represented by over 200 species and is distributed in tropical Africa, Asia, and Australasia (1). The seeds and other parts of Millettia species have been shown to have insecticidal (2) and piscicidal (3) activities due to the presence of such flavonoids as rotenone or related compounds; they are also used in folk medicine (4). Chemical studies on this genus have yielded a variety of flavonoids, especially prenylated isoflavones. In Cameroon, various parts of Millettia plants are used as insecticides and piscicides, as agents for the destruction of worms and snails, and as a cure for intestinal parasites. These uses, coupled with the abundance of Millettia species in Cameroon (5), prompted us to investigate the phytochemistry of Millettia as part of an on-going study $(6,7)$ on Cameroonian medicinal plants. In this paper, we report the isolation, from the seeds of Millettia laurentii De Wild., and the structure elucidation of two alkaloids with a new skeleton, millaurine [1] and O-acetylmillaurine [2].

The ground and defatted seeds of M. laurentii were extracted with EtOAc. Si gel chromatography of this extract using gradient elution from $\mathrm{C}_{6} \mathrm{H}_{6}$ to EtOAc yielded acetylmillaurine [2] ($40 \% \mathrm{EtOAc}$) and millaurine [1] ($100 \% \mathrm{EtOAc}$), which were further crystallized from EtOH and MeOH , respectively.

The molecular formula $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ for millaurine [1] was determined by ${ }^{13} \mathrm{C}-\mathrm{nmr}$ (Table 1) and hreims data. The presence of signals for seven sp^{2} hybridized carbon atoms, among which was a carbonyl carbon of a conjugated ketone, indicated that the compound must be tricyclic. The ${ }^{1} \mathrm{H}$-nmr spectrum (Table 1) was deceptively simple, showing only signals for a methinoxy, two methylene, and three Me groups. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY indicated the methinoxy proton to be vicinal to the two methylenes ($\mathrm{C}-7$ and $\mathrm{C}-9$); its large coupling constant values with the protons at $\delta_{\mathrm{H}} 1.62$ (7 ax) and 2.27 (9 ax) indicated that they were all axial. This point was confirmed by the observation of a W coupling

$1 \quad \mathbf{R}=\mathrm{H}$
$2 \mathrm{R}=\mathrm{Ac}$

[^0]Table 1. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-nmr Data for Millaurine [1] and O-Acerylmillaurine [2] (CDCl_{3}).

Position	Compound						
	1				2		
	δ_{c}	$\delta_{\text {H }}$	$J(\mathrm{~Hz})$	HMBC ${ }^{13} \mathrm{C}$ with ${ }^{1} \mathrm{H}$:	δ_{C}	$\delta_{\text {H }}$	$J(\mathrm{~Hz})$
2	164.1 s	-		-	162.3 s	-	
4	162.2 s	-		10	162.3 s	-	
4 a	111.0 s	-		10	110.8 s	-	
5	192.7 s	-		9ax	192.5 s	-	
5 a	148.1 s	-		7ax,7eq,9ax,9eq, 11,12	146.8 s	-	
6	33.7 s	-		7ax,7eq,9ax,11,12	33.1 s	-	
7 ax	48.4 t	1.62 dd	12.8,11.2	9ax,9eq, 11,12	43.9 t	1.73 dd	13.1,10.4
eq		1.83 ddd	12.8,3.4,1.7			1.82 ddd	13.1,3.2,1.1
8ax.......	65.3 d	4.12 dddd	$\begin{gathered} 11.2,8.9 \\ 5.3,3.4 \end{gathered}$	7ax,7eq,9ax,9eq	67.6 d	5.15 dddd	$\begin{gathered} 10.4,7.9 \\ 5.5,3.2 \end{gathered}$
9 ax	30.9 t	2.27 dd	18.4,8.9	7ax,7eq	27.5 t	2.39 dd	18.8,7.9
eq		2.92 ddd	18.4,5.3,1.7			2.94 ddd	18.8,5.5,1.1
9 a	147.7 s	-			147.8 s	-	
9 b	176.9 s	-		9ax,9eq	176.6 s	-	
10	19.9 q	2.43 s			19.9 q	2.43 s	
11	28.0 q	1.36 s		7ax,7eq,9ax,9eq	27.8 q	1.35 s	
12	28.0 q	1.26 s		7ax,7eq,9ax,9eq	27.9 q	1.29 s	
NH_{2}.	-	5.56 s			-	5.78 s	
OAc: CO					170.4 s	-	
Me- .					21.2 q	2.05 s	

(${ }^{4}=1.7 \mathrm{~Hz}$) between their respective geminal protons at $\delta_{\mathrm{H}} 1.83$ (7eq) and 2.92 (9eq) that were equatorial. The OH group is thus equatorial.

The HMBC spectrum gave information allowing the determination of the structure of the hydroxydimethylcyclohexene moiety; long range correlations were observed between the carbon atoms at $\delta_{C} 148.1(\mathrm{C}-5 \mathrm{a}), 33.7(\mathrm{C}-6)$ and $48.4(\mathrm{C}-7)$ and the Me protons at $\delta_{\mathrm{H}} 1.26$, and 1.36 , between $\mathrm{C}-5 \mathrm{a}, \mathrm{C}-6, \mathrm{C}-8$, and $\mathrm{C}-9$, and the methylene protons at $\delta_{\mathrm{H}} 1.83$ (7 eq) and 1.62 (7 ax) and between $\mathrm{C}-5 \mathrm{a}, \mathrm{C}-7$, and $\mathrm{C}-8$ and the methylene protons at $\delta_{\mathrm{H}} 2.92$ (9 eq) and 2.27 (9 ax). The carbon atom at $\delta_{\mathrm{C}} 33.7$ (C-6) gave $a^{4} J$ correlation with this latter proton 9 ax .

The carbonyl carbon at $\delta_{\mathrm{C}} 192.7$ (C-5) also showed a correlation to $\mathrm{H}-9 \mathrm{ax}$, whereas the carbon atom at $\delta_{C} 176.9$ showed cross peaks to both $\mathrm{H}-9 \mathrm{ax}$ and $\mathrm{H}-9 \mathrm{eq}$ suggested to be involved in a cyclopentadienone ring. The carbon signal at $\delta_{C} 164.1$ showed no correlation in the HMBC, and the carbon atoms at $\delta_{C} 162.2$ (C-4) and 111.0 (C-4a) were correlated only with the Me protons at $\delta_{\mathrm{H}} 2.43$ (C-10). These deficient data prevented further assembling of the partial structures.

Finally, the structure of millaurine $\{1\}$ was established from X -ray analysis of a single crystal. Crystals were obtained by slow crystallization of $\mathbf{1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$. Figure 1 shows the structure of $\mathbf{1}$; the three nitrogen atoms are linked to the same carbon atom forming a guanidine moiety with two of them being involved in a pyrimidine ring. The final atomic coordinates are given in Table 2. As deduced from nmr measurements, the OH group appeared to be equatorial. The asymmetric unit contained two molecules which form a planar dimeric system by means of two hydrogen bonds involving an hydrogen atom at $\mathrm{N}-10$ of one molecule and the heterocyclic nitrogen atom $\mathrm{N}-1^{\prime}$ of the second molecule [distance $N 10-\mathrm{H}_{2} \cdot \cdots . N 1^{\prime}=3.121$ (12) \AA, angle $172.9(4)^{\circ}$] and reciprocally a hydrogen atom at $\mathrm{N}-10^{\prime}$ and the nitrogen atom $\mathrm{N}-1,\left[\mathrm{~N} 10^{\prime}-\mathrm{H} \cdots . . \mathrm{N} 1=3.015\right.$ (8) \AA, angle 172.5 (2) ${ }^{\circ}$. In the crystal packing of the molecules (Figure 2) two other hydrogen bonds were observed, formed between the OH groups $\mathrm{O} 15-\mathrm{H}$ or $\mathrm{O} 15^{\prime}-\mathrm{H}$ and the nitrogen atom $\mathrm{N}-3^{\prime}$ or $\mathrm{N}-3$, linking together the different dimers around the twofold axes $\left[015-\mathrm{H} \cdots \cdot \mathrm{N} 3^{\prime}=2.888(6) \AA\right.$, angle $\left.163.5(5)^{\circ}\right\}$ and $\left\{015^{\prime}-\mathrm{H} \cdots . . N 3=2.862(5) \AA\right.$,

Figure 1. The planar dimer formed by the association of the two molecules of millaurine [1], in the asymmetric unit.
angle $\left.155.7(2)^{\circ}\right]$. In addition, one molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was found on the binary axis crystallizing for two molecules of millaurine.

The second isolated compound, 2, was identified as O -acetylmillaurine. The hreims data indicated the molecular formula $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ and showed a molecular ion 42 mass units higher than that of $\mathbf{1}$. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra (Table 1) were similar to those of $\mathbf{1}$, differing mainly by the presence of an acetyl group and by a shift of the methinoxy proton to $\delta_{\mathrm{H}} 5.15$. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectral assignments arose from analysis of the HMQC and HMBC spectra. The cross peaks depicted in the HMBC spectrum were similar to those previously observed in the HMBC spectrum of $\mathbf{1}$ and led to the same partial structures.

The final structure 2 of acetylmillaurine was established from the X-ray analysis of a single crystal obtained by slow crystallization of acetylmillaurine in EtOH . The final atomic coordinates are given in Table 3. The acetylmillaurine crystal packing is characterized by infinite chains of molecules parallel to the a axis direction. Each molecule (x, y, z) is hydrogen-bonded to two molecules of symmetry ($\pm 0.5+x, 0.5-y$, $-z$) through the hydrogen atoms H_{a} and H_{b} of its nitrogen atom $\mathrm{N}-10$ [distance N10$\mathrm{H}_{\mathrm{a}} \cdot \cdots . \mathrm{N} 1=3.00(1) \AA$, angle $152.1^{\circ} ; N 10-\mathrm{H}_{\mathrm{b}} \cdot \cdots . N 3=3.10(1) \AA$, angle $\left.163.1^{\circ}\right]$ as seen in Figure 3. In contrast to millaurine, the moieties of each dimeric association were not coplanar: the dihedral angle between the mean plane of each molecule was 65.5°.

Ovalin, an amino acid related to pipecolic acid, was previously isolated from Millettia ovalifolia (8). Millaurine $[\mathbf{1}\}$ and its naturally occurring 0 -acetyl derivative $\mathbf{2}$ are the first characterized alkaloids from Millettia species and have a new type of threering skeleton, with a guanidine and a terpenic moiety.

EXPERIMENTAL

General methods.- ${ }^{1} \mathrm{H}-(300.13 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-(75.47 \mathrm{MHz})$ nmr spectra were performed on an AC 300 Bruker spectrometer. Eims and cims spectra were obtained with a Nermag Sidar V 3.0 mass spectrometer and the hrms with a V.G. Analytical ZAB-HF mass spectrometer.

Table 2. Final Fractional Coordinates $\left(\times 10^{4}\right)$ for Millaurine $[1]$ and the Equivalent Isotropic Thermal Factor $\mathrm{U}_{\mathrm{eq}}\left(\AA^{2} \times 10^{3}\right)$.

Position	x	y	z	$\mathrm{U}_{\text {eq }}{ }^{*}$
N-1	2944 (2)	4079 (13)	3156 (3)	51 (8)
C-2	2919 (3)	3603 (14)	2477 (4)	52 (10)
N-3	3181 (2)	2121 (13)	2446 (3)	58 (10)
C-4	3523 (3)	969 (14)	3159 (4)	54 (11)
C-4a	3580 (3)	1333 (14)	3879 (4)	52 (11)
C-5	3921 (3)	515 (16)	4759 (4)	63 (12)
C-5a	3801 (3)	1745 (15)	5232 (4)	54 (10)
C-6	4043 (3)	1469 (14)	6151 (4)	53 (10)
C-7	3885 (3)	3187 (14)	6398 (3)	60 (10)
C.8	3208 (3)	3962 (13)	5649 (4)	55 (10)
C-9	3138 (3)	4514 (1)	4867 (4)	60 (11)
C-9a	3411 (3)	3093 (13)	4676 (3)	46 (10)
C-9b	3284 (3)	2938 (14)	3838 (4)	48 (10)
N-10	2578 (3)	4696 (13)	1777 (3)	70 (10)
C-11	3803 (4)	-707 (17)	3104 (5)	85 (14)
O-12	4225 (3)	-911 (13)	5042 (4)	104 (12)
C-13	3701 (4)	-196(15)	6136 (5)	107 (19)
C-14	4783 (3)	1185 (19)	6837 (4)	88 (14)
O-15	3084 (2)	5547 (13)	5913 (3)	91 (10)
CL-1	4738 (2)	4626 (12)	4096 (2)	204 (10)
C-20	5000	5871 (24)	5000	147 (40)
N-1'	2041 (2)	8372 (13)	1818 (3)	53 (8)
C-2'	2073 (3)	8755 (14)	2511 (4)	56 (11)
N-3'	1804 (2)	10215 (13)	2563 (3)	59 (10)
C-4'	1479 (3)	11393 (14)	1888 (4)	60 (12)
C-4a'	1431 (3)	11109 (13)	1169 (3)	50 (11)
C-5'	1113 (3)	12124 (14)	328 (4)	65 (13)
C-5a'	1277 (3)	11068 (14)	-140(4)	54 (11)
C-6'	1081 (3)	11504 (14)	-1016 (4)	48 (10)
C-7'	1510 (3)	10344 (13)	-1087 (4)	55 (11)
C-8'	1584 (3)	8387 (14)	-830 (4)	49 (10)
C-9'	1861 (3)	8183 (11)	122 (4)	63 (11)
C-9a'	1629 (3)	9572 (13)	363 (3)	45 (10)
C-9b'	1722 (3)	9587 (14)	1178 (3)	43 (9)
$\mathrm{N}-10^{\prime}$	2401 (3)	7579 (14)	3193 (3)	89 (13)
C-11'	1178 (4)	12988 (17)	1950 (5)	91 (16)
O-12'.	780 (3)	13464 (13)	47 (3)	102 (12)
C-13'	351 (3)	11122 (18)	-1784 (4)	81 (13)
C-14'	1216 (4)	13496 (14)	-1042 (4)	78 (13)
O-15'	2027 (2)	7441 (13)	-856 (3)	70 (8)
CL-2	182 (2)	7925 (12)	858 (2)	194 (9)
C-20'	0	6709 (23)	0	132 (35)

$$
{ }^{2} U_{e q}=1 / 3 \Sigma_{i} \Sigma_{i} U_{i j} a_{i} * a_{i j} * a_{i} \cdot a_{i} .
$$

ISOLATION OF COMPOUNDS.-Ground seeds (28 kg) were defatted with hexane and then extracted with EtOAc to give 900 g of material. An aliquot portion (300 g) of this material was subjected to cc over Si gel. Elution with $\mathrm{C}_{6} \mathrm{H}_{6}$ followed by $\mathrm{C}_{6} \mathrm{H}_{6}$ containing increasing amounts of EtOAc gave, from 40% EtOAc, a fraction containing one major compound. This fraction was dissolved in hot EtOH and left to stand at room temperature. A yellow compound precipitated, was filtered, and was washed with cold EtOH followed by $\mathrm{Et}_{2} \mathrm{O}$ to give acetylmillaurine [2] (120 mg).

One of the fractions eluted with 100% EtOAc had crystals suspended in an oil. It was dissolved in hot $\mathrm{Me}_{2} \mathrm{CO}$, from which a solid precipitated. This solid was washed repeatedly with cold ErOH, dissolved in hot MeOH , and left to stand at room temperature. Yellow crystals, millaurine $\{1\}$, precipitated (700 mg).

Millaurine [1].—Yellow needles: mp 248-249 ${ }^{\circ}(\mathrm{MeOH}) ;[\alpha]^{21} \mathrm{D}+20.6^{\circ}\left({ }_{(}=0.18, \mathrm{MeOH}\right)$; ir (KBr)

Figure 2. The molecular crystal packing of millaurine projected down the b axis.
$v \max \left(\mathrm{~cm}^{-1}\right) 3466,3343,3223,2962,2941,1712,1706,1633,1598,1474,1402,1363,1324,1255$, $1202,1174,1056,1030,1014,865,807$; eims m/z (rel. int.) $260(21),[\mathrm{M}]^{+} 259(100), 244$ (37), $240(24)$, 230 (31), 226 (65), 216 (35), 212 (29), 198 (23), 188 (22), 146 (12), $130(14), 115(15), 91$ (22), 77 (34), 67 (43); cims $\left(\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 260$; hrms $m / z\left[\mathrm{M}^{+} 259.1327\right.$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}, 259.1321$).

O-Acetylmillaurine [2].-Yellow needles: mp 218-219 ${ }^{\circ}(\mathrm{EtOH}) ;[\boldsymbol{\alpha}]^{21} \mathrm{D}+51.3^{\circ}(c=0.34, \mathrm{MeOH})$; ir $(\mathrm{KBr}) \nu \max \left(\mathrm{cm}^{-1}\right) 3336,3194,2951,1740,1700,1656,1629,1591,1557,1495,1436,1395,1239$, $1036,882,860,812$; eims m / z (rel. int.) [M] 301 (0.5), 270 (1), 241 (57), 240 (36), 226 (100), 212 (16), $198(13), 184(7), 143(8), 115(4), 67(8) ; \operatorname{cims}\left(\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ (rel. int.) $[\mathrm{M}+\mathrm{H}]^{+} 302(100), 241$ (49), $226(48)$; hrms $m / z[\mathrm{M}+\mathrm{H}]^{+} 302.1516$ (caled for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}, 302.1505$).

Table 3. Final Fractional Coordinates ($\times 10^{4}$) for Acetylmillaurine [2] and the Equivalent Thermal Factor $U_{\text {eq }}\left(\AA^{2} \times 10^{3}\right)$.

Position	x	y	z	$\mathrm{U}_{\text {eq }}$
N-1	-4348 (10)	1923 (5)	1017 (4)	30(7)
C-2	-5826 (12)	1853 (6)	489 (5)	31 (8)
N-3	-7287 (10)	1175 (6)	526 (4)	37 (7)
C-4	-7301 (13)	520 (6)	1138 (6)	39 (9)
C-4a.	-5886 (12)	533 (6)	1707 (5)	31 (8)
C-5	-5437 (13)	-50 (7)	2424 (5)	33 (8)
C-5a	-3568 (13)	402 (6)	2746 (5)	31 (8)
C-6	-2456 (14)	15 (8)	3439 (5)	37 (8)
C-7	-519(13)	556 (7)	3446 (5)	40 (9)
C-8	-640 (12)	1680 (7)	3228 (6)	41 (9)
C-9	-1396 (13)	1854 (7)	2411 (6)	40(9)
C-9a	-3063 (11)	1179 (6)	2259 (5)	30(8)
C-9b	-4464 (11)	1270 (6)	1616 (5)	30 (8)
N-10	-5824 (10)	2511 (6)	-106(4)	36 (7)
C-11	-8863 (15)	-271 (8)	1132 (7)	60 (11.)
O-12	-6338(9)	-745 (4)	2728 (4)	48 (6)
C-13	-3540 (16)	223 (7)	4204 (5)	49 (10)
C-14	-2116 (14)	-1146 (8)	3361 (6)	54 (11)
O-15	1267 (9)	2140 (5)	3236 (4)	45 (6)
C-16	1949 (15)	2455 (8)	3931 (6)	52 (12)
O-17	1157 (13)	2344 (7)	4554 (4)	90 (11)
C-18	3828 (16)	2977 (9)	3828 (7)	67 (13)

[^1]

Figure 3. Drawing of three molecules in the crystal of acetylmillaurine [2]. Intermolecular hydrogen bonds are indicated by dotted lines.

X-Ray crystal analysis. ${ }^{2}$-Millaurine [1]: $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}, 0.5 \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}$; mol wt $259.31+42.47$; crystals obtained by slow crystallization of millaurine from $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$; monoclinic system, space group $C 2 ; Z=8 ; a=27.605(15), b=7.388$ (3), $c=20.183$ (12) $\AA ; \beta=132.52$ (2) ${ }^{\circ} ; \mathrm{V}=3033$ (2) $\AA^{3} ; \mathrm{D}_{\mathrm{c}}=1.32$ $\mathrm{g} \cdot \mathrm{cm}^{-3} ; \mathrm{F}(000)=1272 ; \lambda(\mathrm{CuK} \alpha)=1.5418 \AA ; \mu=2.2 \mathrm{~mm}^{-1} ; 2525$ measured intensities, 1945 observed.

Data were collected on a Phillips PW 1100 diffractometer with graphite-monochromated $\mathrm{CuK} \alpha$ radiation. From the 2447 reflections measured by the $\theta-2 \theta$ scan technique up to $\theta=60^{\circ}$, only 1956 were considered as observed and kept in refinement calculations having $I \geq 3 \sigma(I), \sigma(I)$ from counting statistics.

Acerylmillaurine [2]: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$; mol wt 301.35 ; crystals obtained by slow crystallization of acerylmillaurine from EtOH ; orthorhombic system, space group $P 2_{1} 2_{i} 2_{j}, Z=4, a=7.019$ (3), $b=13.110$ (6), $c=16.849(8) \AA ; V=1550.4(6) \AA^{3} ; D_{c}=1.29 \mathrm{~g} \cdot \mathrm{~cm}^{-3} ; \mathrm{F}(000)=640 ; \lambda(\mathrm{CuK} \alpha)=1.5418 \AA ; \mu=0.70$ $\mathrm{mm}^{-1} ; 1348$ measured reflections, 832 observed.

For both compounds, intensity data were measured on a Nonius CAD 4 diffractometer using graphitemonochromated $\mathrm{CuK} \alpha$ radiation and the $\theta-2 \theta$ scan technique up to $\theta=60^{\circ}$. Only intensities with $\mathrm{I}>3 \sigma(\mathrm{I})$ were considered as observed and kept in refinement calculations, $\sigma(\mathrm{I})$ being derived from counting statistics. Cell parameters were derived from the refinement of 25 well centered reflections.

The structures were solved by direct methods with the program SHELXS86 (9) and refined by full matrix least-squares minimizing the function $\Sigma \mathrm{w}\left(\mathrm{F}_{0}-\left|\mathrm{F}_{\mathrm{c}}\right|\right)^{2}$ with the program SHELX 76 (10). The hydrogen atoms, located in difference Fourier maps, were introduced in the refinement at theoretical positions ($\mathrm{C}-\mathrm{H}$, $\mathrm{N}-\mathrm{H}=1.00 \AA$) and assigned an isotropic thermal factor equivalent to that of the bonded atom, plus 10%. In the structure of $\mathbf{1}$, two molecules of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were found on two different binary axes. Convergence was reached at $R=0.056$ and $R_{w}=0.071$ for $\mathbf{1}, \mathrm{R}=0.056$ and $R_{w}=0.080$ for $\mathbf{2}$, with $R_{w}=\left\{\Sigma w\left(F_{o}-\left|F_{c}\right|\right)^{2} / \Sigma w F_{o}{ }^{2}\right\}^{1 / 2}$ and $w=1 /\left[\sigma^{2}\left(F_{0}\right)+k F_{0}{ }^{2}\right]\left(k=0.00085\right.$ for $\mathbf{1}, 0.00312$ for 2). No residual was higher than $0.35 \mathrm{e}^{-3}$ for $\mathbf{1}$ (0.24 for $\mathbf{2}$) in the final difference map.

ACKNOWLEDGMENTS

This work was supported in part by funds from the University of Yaounde Grants Committee. We gratefully acknowledge practical help received from Jacques Yougang, formerly Director General of Forests Regeneration in Cameroon, with the collection of the plant sample, and Dr. Jean-Paul Brouard for the ms.

[^2]
LITERATURE CITED

1. M. Thulin, Opera Bot., 68, 71 (1983).
2. S.F. Chiu, L. Spin, and Y.S. Chiu, J. Econ. Entomol., 35, 80 (1942).
3. A.K. Singhal, R.P. Sharma, J.N. Baruah, S.V. Govindan, and W. Herz, Pbytochemistry, 21949 (1982).
4. J.O. Kokwaro, "Medicinal Plants of East Africa," East Africa Literature Bureau, Nairobi, Kenya, 1976.
5. T.F. Mbenkum, "Systematic Studies in the genus Millettia Win and Arn," Ph.D. thesis, University of Reading, 1986.
6. J. Kouam, A.E. Nkengfack, Z.T. Fomum, R. Ubillas, M.S. Tempesta, and M. Meyer, J. Nat. Prod., 54, 1288 (1991).
7. B.E. Noumbissie, H. Kapnang, Z.T. Fomum, M.-T. Martin, and B. Bodo, J. Nat. Prod., 55, 137 (1992).
8. R.K. Gupta and M. Krishnamurti, Pbytochemistry, 18, 2021 (1979).
9. G.M. Sheldrick, "SHELXS86, Program for Crystal Structure Solution." University of Görtingen, Germany, 1986.
10. G.M. Sheldrick, "SHELX76, Program for Crystal Structure Determination." University of Cambridge, England, 1976.

Received 2 June 1993

[^0]: ${ }^{1}$ Part 1 in the series "The Millettia of Cameroon."

[^1]: ${ }^{2} U_{e q}=1 / 3 \Sigma_{i} \Sigma_{j} U_{i j} a_{i} * a_{i}{ }^{*} a_{i} \cdot a_{i}$.

[^2]: ${ }^{2}$ Atomic coordinates for these structures have been deposited with the Cambridge Crystallographic Data Centre, and can be obtained on request from Dr. Olga Kennard, University Chemical Laboratory, 12 Union Road, Cambridge CB2 1EZ, UK.

